主页(http://www.pttcn.net):数字集群关键技术(3) 4.3 同步技术
同步和定时是TDMA移动通信系统正常工作的前提。因为通信双方只允许在规定的时隙 一种是用专门的信道传输; 另一种是插入话务信道中传输。
比如在每一个时隙的前面发送一段0、1交替的信号作为位同步信息。此外,在有些通信系统中,位同步信息是从其数字信号中提取的,用这种方法可以不再发送专门的位同步信息,但考虑到TDMA通信系统是按时隙以猝发方式传输信号的,为了迅速、准确而可靠地获得位同步信息,不宜采用这种方法。
同步码的选择是在帧长度确定之后,根据信道条件和对同步的要求而确定的。对帧同步和时隙同步的要求是建立时间短、误捕获概率小、同步保持时间长和失步概率小。从提高传输效率出发,希望同步码短一些,从同步的可靠性和抗干扰能力考虑,希望同步码长一些。对同步码的码型选择,应使之具有良好的相关特性,不易被信息流中的随机比特所混淆而出现假同步。 就同步而言,可以保证各基站和移动台迅速地进入同步状态,也不会因为定时误差随对积累引起失步。系统定时可以采用不向的方法。在移动通信系统中常用的是主从同步法,即系统所有设备的时钟均直接或间接地从属于某一个主时钟的信息。主时钟通常有很高的精度,其信息以方播的方式送给全网的许多设备,或者以分层的方式逐层地送给全网的许多设备,各设备从接收到的时钟信号中提取定时信息,或者说锁定到主时钟上在移动通信系统中也用到独立时钟同步法,其办法是在网中各设备内均设置高精度的时钟,只要根据某一标准时钟进行一次时差校正后,在很长的时间内,时钟不发生明显的漂移,从而得到准确定时,这种办法通常要求各设备采用稳定度很高的石英振荡器来产生定时信号。这对于移动台尤其是小型手持机而言,无论从价格方面或者从体积、重量方面考虑都不合适。而通信网中的基站和其它大型设施采用这种方法还是可以的。
4.3.1 帧同步 目前已找到的只有7个: n 巴克码组 2 ++ 3 ++- 4 +++-,++-+ n 巴克码组 5 +++-+ 7 +++--+- 11 +++---+--+- 13 +++++--++-+-+
表中“+”表示Xi取值为十l,“-”表示Xi取值为-l,以七位巴克码组{+++--+-}
同样可以求出j=2,3,4,5,6,7时R(j)的值分别为-l,0,-l,0,-l,O。另外,再求出j为负值的自相关函数,两者一起画出的七位巴克码的R(j)与j的关系曲线如图4.6所示。由图可见,自相关函数在j=0时具有尖锐的峰值。
图4.6 巴克码的自相关函数 产生巴克码的方法常用移位寄存器,七位巴克码产生器如图4.7。
图4.7 巴克码产生器
图4.7(a)是串行式产生器,移位寄存器的长度等于巴克码组的长度。七位巴克码由七级移位寄存器单元组成,各寄存器单元的初始状态由预置线预置成巴克码组相应的数字。七位巴克码的二进制数为lll00lO,移位寄存器的输出端反馈至输入端的第一级,因此,七位巴克码输出后,寄存器各单元均保持原预置状态。移位寄存器的级数等于巴克码的位数。
另一种是采用反馈式产生器,同样也可以产生七位巴克码,如图4.7(b)所示,这种方法也叫逻辑综合法,此结构节省部件。
图4.8 巴克码判决
当输入数据中的1进入移位寄存器时,输出电平为+l,而0进入移位寄存器时,输出电平为-l,识别器实际是对输入的巴克码进行相关运算。
图4.9 巴克码用于帧同步
但是移动通信系统要在许多用户之间实现相互连接,而构成一个庞大的网络。显然,
|