主页(http://www.pttcn.net):浅析动态视频目标检测和跟踪技术 动态视频目标检测技术 动态视频目标检测技术是智能化视频分析的基础。本文将目前几种常用的动态视频目标检测方法简介如下: 背景减除 实际上,背景的建模是背景减除方法的技术关键。最简单的背景模型是时间平均图像,即利用同一场景在一个时段的平均图像作为该场景的背景模型。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。大部分的研究人员目前都致力于开发更加实用的背景模型,以期减少动态场景变化对于运动目标检测效果的影响。 时间差分 让我们来考虑安装固定摄像头所获取的视频。我们介绍利用连续的图像序列中两个或三个相邻帧之间的时间差分,并且用阈值来提取出视频图像中的运动目标的方法。我们采用三帧差分的方法,即当某一个像素在连续三帧视频图像上均有相当程度的变化(及大于设定的阈值时),我们便确定该像素属于运动目标。时间差分运动检测方法对于动态环境具有较强的自适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产生空洞现象,只能够检测到目标的边缘。 而且,当运动目标停止运动时,一般时间差分方法便失效。 光流 当然,在运动检测中还有一些其它的方法,如运动向量检测法,它适合于多维变化的环境,能消除背景中的振动像素,使某一方向的运动对象更加突出的显示出来。但是,运动向量检测法也不能精确地分割出对象。 动态视频目标跟踪技术 智能化视频监控技术提供有效的目标自动跟踪的工具,在用计算机自动处理视频流的过程中,如发现和跟踪感兴趣的目标,就提示监控人员加以关注,并可以控制灵巧快球摄像机,对移动目标实现自动跟踪。下面我们简述典型的目标跟踪算法的几个步骤。 目标运动轨迹假设:轨迹的交合与分离 2、有一个已知目标与任何一个运动检测区域都不匹配。在这种情况发生的可能性包括:在该目标已移出图像视场,该目标被其他目标遮挡,或该目标未被检测出来。在这种情况下,该目标的可信度值也比较低。 3、有一个已知目标与一个运动检测区域完全匹配,这是目标轨迹跟踪问题中的一种最好情况。将该目标的运动轨迹模型更新,并增加其可信度。 4、有一个已知目标与多个运动检测区域都匹配。发生这种情况的可能性包括:一个目标分裂成为多个独立目标(例如一辆车里出来多个人,或一个多人组合各奔东西),或者目标检测中的聚类算法未能将同一个目标的像素正确地聚为一个目标。在这种情况下,我们可以根据相关函数的值来选择一个最好的区域作为目标的新位置。 5、多个目标与一个运动检测区域匹配。发生这种情况的可能性包括:两个目标互相遮挡,两个目标交合(例如多个人上了一辆车,或多个人组合成为一个组),或者是由于聚类算法的失误而分类的同一目标的两部分重新归为一个。 在这种情况下,需要对该目标的以前的轨迹做一分析。比如这两个目标以前一段时间内的轨迹重合或很相似,则可以将他们合为一个目标。否则,需要将他们按两个独立目标分别对待。 更新目标轨迹模型 消除误报 以上介绍的主要是单路视频图像的目标跟踪问题。在实际监控系统中,往往同一个人或目标出现在多个摄像机的视场里。如何将与此目标相关的各个摄像头采集的视频图像关联起来,根据物体的运动情况,形成其运动轨迹,并自动发送PTZ 控制指令,使摄像机能够自动跟踪物体,尤其在物体超出该摄像机监控范围之后,自动通知物体所在区域的摄像机继续进行追踪。这才能使目标真正获得了跟踪。
|