主页(http://www.pttcn.net):视频编码标准回顾及AVS视频关键技术(2) AVS标准和相关国际标准的时间对应关系以及AVS工作组已经开展的工作如下图所示。 三、视频压缩基本原理 消除统计冗余的基本依据是视频数字化过程在时间和空间上采用了规则的采样过程。视频画面数字化为规则的像素阵列,其密集程度适于表征每点最高的空间频率,而绝大多数画面帧包含非常少甚至不含这种最高频率的细节。同样,所选的帧频能够表征场景中最快的运动,而理想的压缩系统只要描述场景所必需的瞬时运动即可。简言之,理想的压缩系统能够动态适应视频在时间和空间上的变化,所需要的数据量远低于数字化采样所产生的原始数据。 心理视觉技术主要是针对人类视觉系统极限。人类视觉在对比度带宽、空间带宽(特别是彩色视觉)、时间带宽等方面存在极限。而且,这些极限并非相互独立,整体的视觉系统存在上限,例如,人眼不可能同时察觉到时间和空间的高分辨率。显然,没有必要表征那些不能被感知的信息,或者说,一定程度的压缩损失是人的视觉系统是感知不出来的。 视频编码标准并非一个单一的算法,而是一整套的编码工具,这些工具综合起来就达到了完整的压缩效果。视频压缩的历史可以追溯到上个世纪50年代初,在随后30多年时间里,主要的压缩技术和工具逐渐发展起来,在上世纪80年代初,视频编码技术初步成型。最初每个主要的工具都是作为视频编码的一个完整解决方案而提出,各条技术主线平行发展,最终各性能最佳者汇合成为完整的解决方案,方案集成的主要贡献者是标准化组织,来自各国家和组织的专家们共同完成了方案集成工作,或者说,编码标准方案是标准委员会原创的。另外,尽管有些技术多年前就已经提出,但由于实现代价昂贵而没能在当时得到实际应用,直到近年来半导体技术的发展才满足实时视频处理的要求。 四、MPEG标准中视频编解码技术 现代熵编码始创于20世纪40年代末;60年代末应用于视频编码;然后不断改进,80年代中期引入了二维可变长编码(2D VLC)和算术编码(arithmetic coding)方法。 DPCM始创于1952年,同年首次应用于视频编码。DPCM最初是作为空间编码技术而发展,到了70年代中期,DPCM开始用于时域编码。DPCM作为一种完整的视频编码方案,一直持续到80年代初期。从70年代中早期开始,DPCM的关键元素与变换编码技术融合,逐渐形成了混合编码技术,并于80年代早期发展成为MPEG的雏形。 变换编码60年代末首次用于视频,70年代上半期得到实质性的发展,被认为在空间编码方面达到最高分辨率效果。在混合编码中,变换编码用于消除空间冗余,DCPM用于消除时间冗余。运动补偿预测技术极大地提高了时域DCPM的性能,它始创于1969年,80年代初发展成为MPEG的基本形式。80年代早期,扩展出内插编码(interpolative coding),即通过多帧内插进行预测,中间帧通过比例运动矢量(scaled motion vectors)预测。直至80年代末,双向预测技术(bi-directional prediction)诞生,该技术才发展到最终形式。在近年来的进展中(H.264),预测质量得到改进,亦即不同信号之间的相关性降低。因此,变换的必需性降低,H.264使用了简化的变换(4 x4)。 MPEG1和H.261的前身是CCITT H.261标准(始于1984年,实质性完成于1989年),它们有共同的数据结构、编码工具和语法元素。然而两者并非恰好后向兼容。MPEG1可看作是H.261的扩展集。MPEG1的发展始于1988年,实质性完成于1992年。MPEG2可被看作是MPEG2的扩展集,始于1990,实质完成于1994年。H.263始于1992年,第一版完成于1995。MPEG4(其视频是建于MPEG2和.263基础上)始于1993,第一版实质完成于1998年。由于芯片等技术的允许,2003年完成的MPEG-4 AVC/H.264比先前的视频编码标准采用了更为复杂的技术,同时也有新的技术模块??多尺寸块的帧内和帧间编码、多方向空间预测技术、4x4整数正交变换、去除块效应的环内滤波器等,可以获得更高的压缩比。由于采用了数据划分,JVT标准还具有更强的容错能力。 五、AVS标准及其核心技术 1)变换、量化 2)帧内预测 |